Reduced Basis Method for Explicit Finite Volume Approximations of Nonlinear Conservation Laws

نویسندگان

  • Bernard Haasdonk
  • Mario Ohlberger
  • MARIO OHLBERGER
چکیده

The numerical solution of parametrized partial differential equations (P2DEs ) can be a very time-consuming task if many parameter constellations have to be simulated by high-resolution schemes. Such scenarios may occur in parameter studies, optimization, control, inverse problems or statistical analysis of a given P2DE . Reduced Basis (RB) methods allow to produce fast reduced models that are good surrogates for the detailed numerical scheme and allow parameter variations. These methods have gained increasing attention in recent years for stationary elliptic and instationary parabolic problems. In the current presentation we present a RB method which is applicable to nonlinear conservation laws with explicit finite volume discretizations. We show that the resulting RB-method is able to capture the evolution of both smooth and discontinuous solutions. In case of symmetries of the problem, the approach realizes an automatic and intuitive space-compression or even space-dimensionality reduction. We perform empirical investigations of the error convergence and runtimes. In all cases we obtain a runtime acceleration of at least one order of magnitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method

In this paper we derive a priori and a posteriori error estimates for cell centered finite volume approximations of nonlinear conservation laws on polygonal bounded domains. Numerical experiments show the applicability of the a posteriori result for the derivation of local adaptive solution strategies.

متن کامل

Convergence of flux-splitting finite volume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation

We study here explicit flux-splitting finite volume discretizations of multi-dimensional nonlinear scalar conservation laws perturbed by a multiplicative noise with a given initial data in L(R). Under a stability condition on the time step, we prove the convergence of the finite volume approximation towards the unique stochastic entropy solution of the equation.

متن کامل

Monte Carlo and multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws

A mathematical formulation of conservation and of balance laws with random input data, specifically with random initial conditions, random source terms and random flux functions, is reviewed. The concept of random entropy solution is specified. For scalar conservation laws in multi-dimensions, recent results on the existence and on the uniqueness of random entropy solutions with finite variance...

متن کامل

Multi-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws

A mathematical formulation of conservation and of balance laws with random input data, specifically with random initial conditions, random source terms and random flux functions, is reviewed. The concept of random entropy solution is specified. For scalar conservation laws in multi-dimensions, recent results on the existence and on the uniqueness of random entropy solutions with finite variance...

متن کامل

Stability and Existence of Solutions of Time-implicit Finite Volume Schemes for Viscous Nonlinear Conservation Laws

We introduce a time-implicite Voronoi box based finite volume discretization for the initial-boundary value problem of a scalar nonlinear viscous conservation law in a one, twoor threedimensional domain. Using notations from the theory of explicit finite volume methods for hyperbolic problems and results from the Perron-Frobenius theory of nonnegative matrices, we establish various existence, s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008